

High-rise building glazing for strict climatic conditions

Alexander G. Chesnokov, Elena A. Cheremkhina, OAO "Glass Institute", Moscow, Russia

> GPD-2007 16.06.2007

Table of contents

- Introduction
- Climatic conditions of Russia
- Influence of height above ground to climatic factors
- Glass durability
- Heat transfer
- Conclusions

Introduction

«Riverside Towers» Complex,

Moscow

Main trends in modern glass architecture

- number of floors increases;
- part of the glazing in façade area grows up to 80 % of façade area and more;
- sizes of used glass products increase.

Example of the state-of-art building

• Antaeus Hotel, Yekaterinburg

Main glazing requirements

- safety;
- strength (resistance to loads and effects);
- optical properties (coefficients of light transmission, reflection and absorption; same coefficients for solar energy, ultraviolet radiation, optical distortions, colour);
- thermal properties (heat transfer resistance, glazing inner surface temperature, air and water permeability);
- noise insulation;
- durability;
- special properties (including fire resistance, impulse resistance, blast resistance, bullet resistance, thrust resistance etc).

Russian climate

Yakutsk,

Eastern Siberia

Russian climate (cont.)

Norilsk,

The polar night

Russian climate (cont.)

Sochi,
Subtropics

Climatic zoning

Examples of several Russian cities climatic parameters

Oli	A.1						
City	Absolute	Mean air	Absolute	Average air	barometri	Maximum	Normative
	minimu	temperat	maximum	temperature	C	from mean	wind load,
	m of air	ure	of air	of the	pressure,	wind speeds	kPa
							ni a
	temperat	during	temperat	hottest	gPa	by rhumbs,	
	ure, °C	the	ure, °C	month, °C		m/s,	
	, in the second	coldest					
		5-days					
		period,					
		°C					
Moscow	-42	-28	+37	+23,6	995	4,9	0,23
Saint Petersburg	-36	-30	+34	+22	1010	4,2	0,30
Volgograd	-35	-28	+44	+30	1000	8,1	0,38
Derbent	-19	-11	+38	+28,2	1015	5,2	0,60
Novosibirsk	-50	-42	+38	+24,6	995	5,7	0,38
Yakutsk	-64	-57	+38	+25,2	995	2,6	0,30

Climatic factors dependence from altitude

Temperature, atmospheric pressure and wind load dependence from altitude

Main particularities of high-rise building glazing design

- Risk increase, appeared during assemble,
 exploitation and maintenance of glazing. This risk generates a need in more strict safety requirements.
- Complication of operational conditions due to loads and effects increase.
- Stricter requirement to aesthetic effect of the glazing due to glazing area growth.

More strict safety requirements

«Alye parusa» housing estate, Moscow

Relevant factors for design

- nominal working load;
- glazing weight;
- minimal possible temperature and maximal atmospheric pressure of installation region;
- maximal wind load of glazing position;
- maximal snow load (with possibility of snow bags forming) of installation region;
- activity of solar radiation absorbed by glazing.

Heat transfer coefficient dependence from external temperature

U dependence from external air temperature

Deformation in the center of the IGU's

panes

Heat transfer coefficient dependence from wind speed

U dependence from wind speed

Optical properties

- optical distortions visible in reflected light
- color of used glass

Moscow-city business center

Conclusions

It is necessary to raise higher requirements to the glazing concerning:

- Wind loads resistance;
- Heat transfer resistance due to heat loses through the glazing increase, inner glass pane temperature lowering and discomfort for people indoor;
- Protection from excess solar radiation infiltration.

Contact info:

Please, don't hesitate to ask speaker or contact with

OAO «Glass Institute»

111024, Moscow, Russia

Dushinskaya str., 7

+7 495 363-9687, 361-1502 (phone)

+7 495 363-9688 (fax)

E-mail: stateglass@co.ru, ic.steklo@mail.ru

Thank you for attention!