

New standard on laminated glass for buildings

Olga A. Emelianova, <u>Alexander G. Chesnokov</u> (Glass Research Institute, Moscow)

Now we present

Intergovernmental Standard GOST 30826-2001

Laminated sheet building glass.

Specifications

Interstate Scientific and Technical Committee of Standardization, Technical Regulation and Certification in Construction field (ISTCS)

Development phases of GOST 30826-2001

- 1993 development start;
- 1996 first version of the standard;
- 2000 second version of the standard;
- 2001 approval by Interstate Scientific and Technical Committee of Standardization, Technical Regulation and Certification in Construction field;
- January 01, 2003 the standard was put into force in Russia

Laminated glass types in GOST 30826-2001

- resistant to mechanical loads
 - secure during use (resistant to soft body impact);
 - resistant to hard objects impact;
 - bulletproof;
 - explosion protective;
- fire proof;
- sound insulating;
- frost-resisting;
- laminated glass with special properties (for example, with radio-interference defense, biological protection, informational defense, increased endurance etc).

Flat glass types applied for laminated glass manufacturing

Glass type	Norm	Glass mark
Flat	GOST 111	M0, M1, M2
Figured	GOST 5533	U(Y)
Wire	GOST 7481	A
Polished wire	<u>—</u>	A_{Π}
Tint	<u>—</u>	T
Hardened:		
Chemically strengthened	<u> </u>	X
Tempered	GOST 30698	Z(3)
Solar-control	<u>—</u>	S(C)
Energy-efficient:		
With hard coating	GOST 30773	К
With soft coating	-	I(N)

General requirements to laminated glass

- Appearance factors,
- Requirements to geometrical dimensions,
- Requirements to edge working,
- Ultraviolet radiation effect resistance,
- Moisture resistance,
- Optical distortions.

Tolerate number of local defects

Number	Magnitude of defect, L, mm				
of lami-	0,5< L ≤1,0	1,0 <l td="" ≤3,0<=""></l>			
nated	Fo	or a plate area	a, m ²		
plates	For all dimensions (areas)	≤1,0	1,1 – 2,0	2,1 – 7,9	≥ 8,0
2	Tolerate but in unfocused form *	1	2	1 in m ²	1,2 in m ²
3		2	3	1,5 in m ²	1.8 in m^2
4		3	4	2 in m ²	$2,4 \text{ in m}^2$
≥ 5		4	5	$2,5 \text{ in m}^2$	3 in m^2

Tolerate linear defects

Area of the laminated glass, m ²	Number of defects with length, mm			
Them of the formation of Simos, in	From 3 to 10	Above 10 to 30		
Below 5	1	Debarred		
From 5 to 8 inclusive	2	1		
Above 8	3	2		

Extreme deviations in length and width dimensions

Nominal dimension to	Thickness of lami-	Thickness of laminated glass > 12	
length or width, mm	nated glass ≤ 12	Each glass plate has	Al least on plate
		nominal thickness < 6	has thickness ≥ 6
Below 1100	+2,0/-2,0	+2,5/-2,0	+3,5/-2,5
From 1100 to 1500	+3,0/-2,0	+3,5/-2,0	+4,5/-3,0
From 1500 to 2000	+3,0/-2,0	+3,5/-2,0	+5,0/-3,5
Above 2000	+3,5/-2,5	+5,0/-3,0	+6,0/-4,0

Requirements to edge working

Similar to EN ISO 12543:5

ultraviolet radiation effect resistance

 Similar to EN ISO 12543:4 – UV radiation action during 100 hours

Moisture resistance

Similar to EN ISO 12543:4 – moisture action at 50° C temperature (if glass has absorptance above 15 % - 70° C) during 14 days

Optical distortions

• Similar to EN 572-2 – "brick wall", 60°

Requirements to safety glass (soft body impact)

Similar to ANSI Z97.1-1984 and DIN 52337

Protection class	Drop height, mm	Bag mass, kg
SM(CM) 1	300±30	
SM(CM) 2	700± 30	45±1
SM(CM) 3	1200± 30	
SM(CM) 4	2000± 50	

Requirements to hard objects impact resistant glass

Similar to EN 356

Protection class	Drop height, mm Total number of hi		Mass, kg	
P1A	1500± 20	3		
P2A	3000 ± 20	3		
P3A	6000± 20	3	4,108±0,4	
P4A	9500± 20	3		
P5A	9500± 20	3x3		
Hammer and axe test				
P6B	-	от 30 до 50		
P7B	-	св. 50 до70	$2,0\pm0,1$	
P8B	-	св. 70		
Note: Hammer and axe test will be implemented from 01.01.2004				

Requirements to bulletproof glass

Protection		Name and index of the car-	Bullet characteristics			Firing dis
class	Fire-arm type	tridge	Core type	Mass,	Velocity, m/s	Firing dis- tance, m
Р(П)1	Makarov pistol PM(ΠΜ)	9-mm gun cartridge 57-H-181C with Pst(Пст) bullet	steel	5,9	315±10	5±0,05
1 (11)1	Nagan-type revolver	7,62-mm rev. cartridge 57-H- 122 with R(P) bullet	lead	6,8	285±10	5±0,05
Р(П)2	Special small-bore pistol PSM(ΠCM)	5,45-mm gun cartridge 7H7 with Pst(Пст) bullet	steel	2,5	320±15	5±0,05
1 (11)2	Tokarev pistol TT(TT)	7,62 gun cartridge 57-H-134C with Pst(Пст) bullet	steel	5,5	430±15	5±0,05
P(Π)2a	12-gauge Shotgun	18,5-mm sporting cartridge	lead	35,0	400±10	5±0,05
	AK-74 Kalashnikov automatic rifle	5,45-mm cartridge 7H6 with PS(ΠC) bullet	thermostrengthened steel	3,4	900±10	5-10
P(Π)3	AKM Kalashnikov automatic rifle	7,62-mm cartridge 57-H-231 with PS(ΠC) bullet	steel without ther- mostrengthening	7,91	725±15	5-10
Р(П)4	AK-74 Kalashnikov automatic rifle	5,45-mm cartridge 7H10 with PP(ΠΠ) bullet	thermostrengthened steel	3,6	900±10	5-10
Р(П)5	Sniper rifle SVD(СВД)	7,62-mm cartridge 57-H-323C with LPS(ЛПС) bullet	steel without ther- mostrengthening	9,6	830±10	5-10
P(11)5	AKM Kalashnikov automatic rifle	7,62-mm cartridge 57-H-231 with PS(ΠC) bullet	thermostrengthened steel	7,9	725±15	5-10
Р(П)5а	AKM Kalashnikov automatic rifle	7,62-mm cartridge 57-G3-231 with BZ(G3) bullet	special	7,6	735±15	5-10
Р(П)6	Sniper rifle SVD(СВД)	7,62-mm cartridge CT-M2	thermostrengthened steel	9,6	830±10	5-10
Р(П)6а	Sniper rifle SVD(СВД)	7,62-mm cartridge 7-Б3-3 with B(Б)-32 bullet	special	10,4	820±20	5-10

Requirements to explosion protective glass

Protection	Protection class corre-	TNT	Distance from	Blast wave	Pressure of
class	spondence with another	charge	the possible	specific im-	blast wave,
	documents and norms	mass, kg	explosion	pulse, Pa/s	kPa
	into force				
К1	DV(ДВ)5*	2	23	10	6.5
К2	DV(ДВ)4		12	20	15
К3	DV(ДВ)3		9	35	25
К4	DV(ДВ)2		5	55	65
К5	DV(ДВ)1		3	100	200
К6	A**	100	45	150	20
К7	В		30	220	35
К8	C		20	330	65
К9	D		15	500	100
К10	E		12	750	175
К11	ER1***	1000	35	900	100
K12	ER2		30	1500	150
K13	ER3		25	2200	200
K14	ER4		20	3200	250

Notes (references) – 1.* RD 77-7399-02-2001 "Protective Blastproof Glasses", Central Directorate of Civil Defense and Emergency Situation, Moscow

^{2. **} General Service Administration of USA norms;

^{3. ***} EN CEN norms.

Requirements to fire proof glass

Complete analog of EN 357

Requirements to sound insulating glass

Analogue of prEN 12758-1

Requirements to frostresisting glass

Frost resisting glass must sustain influence of low temperatures from − 50° C and lower depending on region of future exploitation (below minimal temperature of operation zone on 5° C)

Requirements to laminated glass with special properties

Specified in glass supply contract

Remark

• Same laminated glass can reply several different special requirements (for example, it can be bulletproof and explosion-resistant). Such glass must be marked in accordance with all requirement classes.

GOST 30826-2001 correspondence

- EN 356 Glass in building Security glazing Testing and classification of resistance against manual attack
- EN ISO 12543:1 Glass in building Laminated glass and laminated safety glass Part 1: Definitions and description of component parts (ISO 12543-1:1998)
- EN ISO 12543:2 Glass in building Laminated glass and laminated safety glass Part 2: Laminated safety glass (ISO 12543-2:1998)
- EN ISO 12543:3 Glass in building Laminated glass and laminated safety glass Part 3: Laminated glass (ISO 12543-3:1998)
- EN ISO 12543:4 Glass in building Laminated glass and laminated safety glass Part 4: Test methods for durability (ISO 12543-4:1998)
- EN ISO 12543:5 Glass in building Laminated glass and laminated safety glass Part 5: Dimensions and edge finishing (ISO 12543-5:1998)
- EN ISO 12543:6 Glass in building Laminated glass and laminated safety glass Part 6: Appearance (ISO 12543-6:1998)
- pr EN 12543:1998 Glass in building Laminated glass and laminated safety glass Part 7: Evaluation of conformity
- pr EN ISO 14440 Glass in building Specification for security glazing Explosion-pressure-resistant glazing Classification and test method (ISO/DIS 14440:1994)
- ANSI Z97.1-1984 Safety Glazing Materials Used In Buildings Safety
- DIN 52337 Methods of testing flat glass for use in buildings; pendulum impact tests

Conclusions

- Joining in one document of all laminated glasses for building manifold is very comfortable for developers and customers
- GOST 30826-2001 is tightly bound with European standards and that fact lighten international trade
- GOST 30826-2001 takes into account specificity of laminated glass application in Russia

If you have question you can address to presenter or directly to developers:

Glass Research Institute

Dushinskaya str., 7

111024, Russia, Moscow

Tel: +7 095 363-9687, 361-1502

Fax: +7 095 363-9688

E-mail: stateglass@co.ru; ag@tchesnokov.ru

Thank you for attention!